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Abstract

This paper presents a novel method to analyze the vibration signals in the fault diagnosis of water hydraulic motor. The
method of feature extraction from the vibration signals of the water hydraulic motor based on the second-generation
wavelet is investigated. The second-generation wavelet consists of a lifting scheme. The algorithm and method of multi-
decomposition based on the lifting scheme for vibration analysis is developed. The denoise method for the vibration signals
is proposed on the lifting scheme and the generalized cross validation (GCV). The relationship between the signal-to-noise
(SNR) and GCV is presented. The corrupted simulated signal is used to test the proposed denoise algorithm. The method
for extracting the feature values from the impulse vibration signals based on the statistical method is studied. The results
show the applicability of this method for fault diagnosis of a water hydraulic motor.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing environmental impact of operating oil-based hydraulic system and the concern raised by
environmentally conscious organizations, a most exciting area of development in the fluid power industry over
the past few years has been in water hydraulics, which involves using tap water as a viable alternative to oil in
fluid power transmission. Water hydraulic systems have been used in the farming, forestry, food,
pharmaceutical and paper industries [1-3].

The axial piston motor is commonly applied to provide high torque and performance for water hydraulic
system. Pistons are the principal operating clements of reciprocating machines and their fundamental
performance invariably depends on the smooth and efficient motion of pistons in the cylinder bore. The axial
piston swash-plate-type hydraulic motor comprises a discrete number of pistons that reciprocate in a
sinusoidal fashion for the purpose of torque output. The basic force within axial piston pump has been
analyzed and summarized. The instantaneous torque exerted on the shaft has been computed and the resonant
frequencies of the pump that occur at even-multiples of the “piston-pass’ frequency have been shown [4]. The
mathematical equations describing swash-plate behavior have been derived from the general hydraulic and
mechanical considerations [5].
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The dynamic behavior of the axial piston motor is nonlinear and the factors that influence the performance
of the axial piston motor are complicated. Theoretical analysis of the vibration sources and transmission paths
of the water hydraulic axial piston motor has not attracted as much attention as experimental investigations,
due to the complexity in modeling. However, some recent works have been reported. The vibration energy
transmission characteristics from the cylinder to a swash-plate within an axial piston pump had been studied
by Qiu et al. [6]. Qi and Lu [7] investigated the vibration and condition monitoring problems of oil hydraulic
axial piston pumps. Investigations showed that the main source of vibration is the impact between the slipper
and swash plate when the piston/slipper moved into a pre-compression process. This impact force may excite a
resonant vibration of the pump housing. Bahr et al. [8] developed a mathematical model to investigate the
vibration characteristics of the pumping mechanism of oil hydraulic constant-power axial piston pumps with
conical cylinder blocks. They applied Fourier transform in the vibration analysis of the axial piston pump. But
Fourier analysis has some inherent limitations in the analysis of the non-stationary signal. It cannot
characterize the impulsive vibration signal in the reciprocating or rotating machine.

The wavelet theory [9] has become one of the emerging and fast-evolving mathematical and signal-
processing tools due to its many distinct merits. It can perform maps with good time resolution at high
frequency to identify the impulse vibration signal at which transient phenomena takes place. Serkhar [10]
detected the crack through wavelet transform for a run-up rotor by continuous wavelet transform (CWT).
Wavelet analysis is applied to analyze the pressure signal for health diagnosis of the pump [11]. The vibration
signal in the rotating and reciprocating machinery is non-stationary in nature. The vibration signals produced
by industrial machinery are vital indicators of machinery health [12-16].

In this paper, a novel approach is proposed for using vibration analysis for the fault diagnosis of the water
hydraulic motor. The proposed method is based on second-generation wavelets that are constructed by a
lifting scheme. A lifting scheme is a new method for constructing wavelets. It gradually constructs a new
wavelet with improved properties. The classical wavelets are known as translation and dilation of one fixed
function, where the Fourier transform is very important. The second-generation wavelet with lifting scheme is
entirely spatial and needs less computational time compared with CWT.

The organization of this paper is as follows. Section 2 describes the vibration mechanism and
characteristics. Section 3 discusses the second-generation wavelet to analyze the signal. Section 4 analyzes
generalized cross validation (GCV) for the signal de-noising to improve the signal-to-noise ratio (SNR).
Section 5 describes the experimental rig and apparatus of hydraulic motor and water hydraulic system. In
Section 6, the multi-decomposition based on the lifting scheme and GCV is proposed. The simulated signal
and experimental vibration signal are analyzed by the proposed method for the fault detection of piston crack
in a water hydraulic motor. Section 7 concludes the paper.

2. Water hydraulic motor vibration mechanism

The actuator studied here is a five-piston axial piston motor used in a water hydraulic system. An
accelerometer mounted on the casing of the MAH 12.5 water hydraulic motor was used to obtain the
vibration signal from the motor. The complete water hydraulic system was provided by Danfoss Inc. and
Fig. 1 shows the general structure of the water hydraulic motor [17]. An axial piston motor consists mainly of
a valve port plate with inlet and outlet ports, a swash-plate, an outer shell, a cylinder block, pistons with shoes,
a bias spring, a port flange and a shaft. The piston fits within the bores of the cylinder barrel and is on the
same axis as the output shaft. The swash-plate is positioned at an angle and acts as a surface on which the
piston shoes travel. The shoes are held in contact with the swash-plate by the retaining rings and the bias
spring. The port plate separates the incoming fluid from the discharging fluid. The output shaft is connected to
the cylinder barrel.

The hydrostatic axial piston motor is driven by the pistons within the cylindrical block. The pistons are
nested in a circular array in the cylinder at equal intervals about the z-axis. The cylinder block is held tightly
against the valve cover using the compressed force of the springs. The valve cover is separated from the
cylinder block by a thin film, which forms a hydrodynamic bearing between them under normal operating
conditions. A ball-and-socket joint connects the base of each piston to a slipper. The slippers themselves are
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Fig. 1. Swash plate water hydraulic motor with five pistons.

kept in reasonable contact with the swash plate support by the retaining rings. The hydrostatic and hydro-
dynamic bearing surface separates the slippers from the swash plate support.

The pistons drive the cylinder block to rotate around the z-axis at a constant angular speed by the pressure
in the supply port. Each piston periodically passes over the supply and return line ports on the valve plate. The
slippers are held against the inclined plane of the swash plate. The pistons undergo an oscillatory displacement
in and out of the cylinder block. When the piston passes over the supply port, the pressure causes the piston to
withdraw from the cylinder block. The piston passes over the return line port and the fluid is pushed out of the
piston chamber. These motions of the piston and cylinder block repeat and the basic task of the output torque
is then completed.

As the water enters the inlet and exits at the outlet of the hydraulic motor, the pressure in the cylinder
chamber alternates from high pressure to low pressure. This causes pressure pulsation to occur. The total
cylinder area inside a supply port is variable as a result of the cyclic variations of the piston passing through
the supply port. It generates the variations of the axial output moment. The variations of the forces are applied
from the piston to the swash plate and the valve cover. The force between the support for the swash plate and
the valve cover is opposite in direction. The hydraulic motor body vibrates as a result.

A hydraulic system generates more complicated vibration (noise) on account of the interaction between the
two pressure pulsations produced by the motor and pump. The fluid-borne vibration causes the structure-
borne vibration that has a negative effect on the life span of motor and pump. Kojima and Shinada [18] and
Edge and Johnston [19] investigated the fluid-borne vibration in a combination circuit consisting of a pump, a
motor and a connecting pipe. The pressure ripple is characteristic of a fundamental component at piston
frequency obtained in a general hydraulic system. The pressure ripples in piston pumps and motor are mostly
due to an intermittent impulsive back flow into the cylinder chamber in the neighborhood of the bottom and
top dead center. The characteristic frequencies of fluid-borne vibration in hydraulic system have two flow and
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pressure pulsating sources that the pump and motor generate, respectively. The fundamental frequencies of
water hydraulic motor and pump are determined as follows:

J/ =:zN, (1
where f'is the fundamental frequency of the hydraulic pump and motor, z is the piston number, and N is the

angular speed. In this work, fundamental frequency f was 52.5 Hz, piston number z was 5 and rotational speed
N was 630 rev/min.

3. Second-generation wavelet
3.1. Wavelet subband transform

The wavelet analysis produces a family of hierarchically organized decompositions. The level is chosen
based on a desired low-pass cutoff frequency. The one-dimensional wavelet decomposition represents a real-
value discrete-time signal in terms of shifts and dilations of a low-pass scaling function and a bandpass wavelet
function. The wavelet decomposition consists of a set of scaling coefficients (A) that represent the coarse signal
information and wavelet coefficients (D).

Fig. 2 shows the general block scheme of wavelet subband transform [20]. The low-pass filter 4 and
band pass filter § are used for the forward transform followed by subsampling. The low-pass synthesis
filter 4 and high-pass synthesis filter g are used for the inverse transform after the upsamples. The four filters 4,
g, h, and §, of WT are finite impulse response (FIR) filters. The condition for the perfect reconstruction is
given as

h(z"Yh(z) + Gz g(z) = 2, )

h(=z"Yh(z) + §(=="")g(2) = 0. (€)

The above shows that half of the filtered samples are thrown away which is not efficient. In order to solve
this problem, the signal would be subsampled before the filtering. The input signal X as shown in Fig. 2 is
divided as even samples (x,) and odd samples (x,). The scale coefficients and wavelet coefficients can be
obtained in the polyphase representation

D)\ he(z)  ho(2) Xe(2) @
A2 ) T\ d@ d,e) )\ 7'xE )

The polyphase matrix is defined as
< he(z)  ho(2)
Pz)y=1{ . R . 5
© (ge(z) 3,2 ©

The even output sample (y.) and odd output sample (y,) from the inverse wavelet transform in Fig. 2 is
given in the polyphase matrix
V@) \ [ he(2) 9.(2)\ [ Del2) ©
232 )\ ho(2) 9,(2) )\ Ael2) )
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Fig. 2. The block scheme of subband transform.
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The second polyphase matrix is defined as
he(z)  g.(2)
P(z) = . 7
© (ho(z) 9,2 @
Fig. 3 shows the one-stage filter for signal decomposition and reconstruction using polyphase matrices.

Egs. (4) and (6) are incorporated in split and merge boxes. For the perfect reconstruction, the following
equation can be obtained:

Pz"HP(z) = 1. ®)
The following equation can be derived from Eq. (8) and Cramer’s rule:

he(2) = g,(=71),  ho(2) = —g.(z7"),

9
3.2) = (=) G0 = he(z) )

Eq. (9) implies the following equation as
Iz =—z""g(=="") ) =z""h(==""). (10)

3.2. Lifting scheme

Wavelet represents the general functions as data building blocks, which can obtain the important data sets
with a small number of coefficients. The second-generation wavelet transform is constructed by the lifting
scheme. The lifting scheme is a spatial or time-domain construction of biorthogonal wavelets [20,21]. The
basic idea behind lifting is that it provides a simple relationship between all multi-resolution analyses that
share the same low-pass filter or high-pass filter. The low-pass filter gives the coefficients of the refinement
relation, which entirely determines the scaling functions where the coefficients are given by the high-pass filter.

The lifting scheme consists of iterations of the following three basic operations as shown in Fig. 4. Firstly,
the split divides the original data into two subsets. The original signal is split to the even indexed points and
the odd indexed points, that is x.[n] = x[2n] and x,[r] = x[2n + 1]. This generates the wavelet coefficients d[n]
as the error by the predicting operator P:

d[n] = x,[n] — P(xc[n]). (11)
The process of computing a prediction and recording it is called a lifting step. The original signal is

transformed from (x,, x.) to (x,,d). There is aliasing in the even samples due to the subsample. The second
lifting step is introduced to solve the problem. The update combines x.[n] and d[n] to obtain the scaling

— — D—»

L — A —

Fig. 3. The polyphase representation for signal analysis and reconstruction.
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Fig. 4. Lifting step and inverse lifting step.
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Fig. 5. Low-pass subband is lifted with help of high-pass subband (predict) and high-pass subband is lifted with help of low-pass
subband (update).
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coefficients c[n] that represents the coarse approximation in the original signal. The updated operator U is used
with the wavelet coefficients for x,[n].

c[n] = x.[n] + U(d[n)). (12)

These three steps form the lifting stage. The iterations of the lifting stage on the output samples create the
complete set of discrete wavelet transform scaling and wavelet coefficients ¢/[n] and &[n] at each scale ;.

Fig. 5 shows that the low-pass subband is lifted with the help of the high-pass subband (predict) and the
high-pass subband is lifted with the help of the low-pass subband (update). The lifting steps are easily inverted.
The following equations for invertible lifting are derived:

xe[n] = c[n] = U(d[n]),  x,[n] = d[n] + P(x.[n]). (13)

The lifting theory shows that any other new finite filter g’ complementary to / is of the form that is called the
update step.

9'(2) = g(2) + (2)s(z), (14)
where s(z%) is a Laurent polynomial. The new polyphase matrix is shown as
he(z)  he(2)s(2) + 9.(2) 1 s(2)
oy —
Pw—(m@)mvmm+%@>‘P@<o D) (2

The new filter /i (z) complementary to §(z) is indicated as

i) = hz) + §E)3E). (16)

The new dual polyphase matrix is given by

S 7D+ 5@ he(2)+ 5,23 (13 4
P@‘< 3. 3,(2) )‘(01)””

Similarly, the high-pass subband is lifted with the help of the low-pass subband. The dual lifting equations
(the predict step) are given as

(17)

1) = ) + g2, ()
h(9)+ 0.2HC) 4.0) 1o
ﬂw:(m@+%@m)%@>=””Q@ J’ (1)
7'(2) = §2) + W), (20)
o he(2) ho(2)
P@‘<¢@+&@m)m@+%@mﬂ' D

Some wavelet filters such as Haar, Daubechies, and Cubic B-splines wavelet function can be used to build
the second-generation wavelet transform into lifting steps. Haar wavelet is used in this research to generate the
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lifting step. Haar wavelet has the following filters:
hz)y=1+z"", gz)=—-1/2+1/2z71,
z)y=1/241/2z"", §z)=—-1+1z"". (22)
The multi-decomposition consists of the following implementation:
s§°’ = Xy, d§°) = X2/41,
d=d" -5 5 =5+1)2d,. (23)

4. Generalized cross validation

The following model of a discrete noisy signal is considered:

y=f+e (24)

The vector y represents the input signal and f is an unknown and deterministic signal. The noise ¢ is

stochastic signal. The wavelet representation is used to reconstruct the original data. The following transform
is considered:

v=Wf, (=We w=Wy=v+{. (25)

This transform localizes the most important spatial and frequency characteristics of a regular signal in a
limited number of wavelet coefficients. The Donoho’s ‘soft-thresholding’ or ‘shrinking’ function is proposed to
reduce the small coefficients.

The shrinking (soft-thresholding) operations can be represented as

ws = Dsw, (26)

0 if |w;| <9,
dip = 1 —9/|w;| otherwise

where D; = diag[d;;] with

and ¢ is the optimal soft-threshold value. The elements of the matrix Ds depend on the signal w. In the same
way, the inverse transform can be obtained

Vs = A5y, (27)
where A; is the influence matrix As = W~-'DsW .

The optimal parameter ¢ is applied to the wavelet coefficients to improve the maximum SNR. It means to
minimize the mean square error R(6) = (1/N)||ws||> = (1/N)||ws — v||* = (1/N)|| Wes||>. However, the signal
f is unknown. The optimal threshold cannot be found. Donoho and Johnstone [22] proposed to use the
‘universal threshold’ estimation

5 = /2 log(N)o. (28)

This equation needs the knowledge of the noise variance, which is not readily available in practice.

In order to find the optimal threshold directly by using the input data, Weyrich and Warhola [23] applied
the idea of cross validation to obtain the excellent results. This cross validation [24] is a function of the
threshold value only based on the input data. Its minimum is a good approximation for the optimal threshold.

In order to minimize the function R(J), a new matrix is introduced as

. Owg;
e
Here if i#j, then D;.j = 0. For i =, the following equation can be defined:
D {0 if |wi|.<5, (30)
" 1 otherwise.
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The trace of the matrix D’ is calculated as

Tr(D') = #{i|ws; #0}. (31
The derivative influence matrix is introduced and defined as
A =WwI'D'W and Tr(4)=Tr(D). (32)

The cross validation in an informal way is introduced to minimize the error function based on an unknown
exact signal. The GCV is defined as

(1L/N)lly — psl?
[Tr(I — A")/NT*

The parameter GCV is the estimation of the optimal threshold 6.

GCV() = V(9) = (33)

5. Experimental setup and procedure

The water hydraulic motor test apparatus as shown in Fig. 6 consists of a MAH12.5 Nessie water hydraulic
motor, a brushless servo motor, a digital torque meter and a water hydraulic system. The water hydraulic
system allows axial piston motor operation in the range of 300-3000 rev/min and 0-6 N'm. The digital torque
meter is made up of a detector and an operational display. The detector converts the shaft-rotating angle,
which is proportional to an applied axis torque of the motor into a phase difference signal. In order to measure
the rotational speed of the detector shaft, the detector is provided with a rotation detector and a gearbox on
the torsion bar. The transmission ratio of the gearbox is 3.4. The torque converter processes the signals and
shows the results as the digital value of torques and rotational speeds. The brushless servo motor is superior in
providing the precise and stable torque in the range of 0-10.2 N'm for the motor. The servo digital control
modules were used to control the brushless servo motor and cause it to generate the constant output torque.
The range of the output torque by servo motor is 3.0 Nm. The arbitrary function generator can output DC
voltage to the servo digital control modules for adjusting the output torque of the servo control motor. The
servo digital control system can also be controlled and displayed by the interface control software installed in a
personal computer.

Function
¢ generation

Nessie
motor

~ Control
motor

Torque Speed

- ! detector ~ Accelerometer

Water hydraulic
system

Fig. 6. Water hydraulic motor test system.
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Fig. 7. Piston cracks in back section and front section.

A piezoelectric accelerometer (Briiel & Kjaer type 4393) was mounted on the shell of the motor near the inlet
of the water hydraulic motor. The output signal from this accelerometer was simultaneously fed to the
amplifier and 5B41 filters for noise reduction and anti-aliasing. A data acquisition card (AT-MIO-16L-9 from
National Instruments Inc.) that was controlled by LabView was used to convert analog signals to digital
signals. The sampling rate obeys the Nyquist formula and was chosen to be 2 kHz that was sufficient for the
type of signals considered in this work. A time record of 2000 data points was taken in each experimental run.
The rotational speed of the motor was 630 rev/min. The output axis torque of Nessie motor was 5 Nm. The
data points of vibration signal covered one rotational period of the motor detected by the torque and speed
detector. The signal characteristic can be fully described within the rotational period.

Piston crack was simulated in the axial piston of the Nessie motor by using an electro-discharge machine.
The introduced crack is 0.1 mm wide. There were five operational conditions in this research work. They were
normal condition (NC) and four faulty conditions with four different kinds of piston cracks. For the Nessie
motor, in order to detect the different piston crack locations as shown in Fig. 7 and piston crack lengths, four
kinds of piston cracks were introduced as follows:

(1) Back long crack (BLC): The crack is 10 mm long and located in the back section of the piston.
(2) Back short crack (BSC): The crack is Smm long and located in back section of the piston.

(3) Front long crack (FLC): The crack is 10 mm long and located in the front section of the piston.
(4) Front short crack (FSC): The crack is 5Smm long and located in the front section of the piston.

6. Results and discussion
6.1. Noise reduction of vibration signal

Wavelet denoising is a noise reduction method by transforming the corrupted signals into the wavelet
domain by applying thresholding in the wavelet domain and inversely transforming the denoised wavelet
coefficients. The wavelet coefficients can be obtained by the decomposition of Haar wavelet filter into the
lifting step. The discrete wavelet transform based on the lifting step is used for the multi-level wavelet
decomposition. At each scale, GCV is used as the threshold to process and discriminate the original signals
and noise.

The procedure to be executed can be described as follows:

(1) Obtain the wavelet coefficient by computing w = Wy, using the multi-level decomposition based on the
second-generation wavelet, that is lifting scheme.
(2) Determine a start threshold value.
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(3) Minimize the value of the parameter GCV(9).
(4) Compute ws = Dsw.
(5) Inverse wavelet transform: ys = W~lws to obtain the denoised signal.

The simulated signals were generated by the following functions to test this proposed algorithm. Figs. 8(a)
and (b) show the original signals and the corrupted signals with SNR of 1 dB. Figs. 8(c)—(e) show the de-noise
signals by the multi-decomposition at first scale, second scale and third scale, respectively. The SNR is
improved at second scale and third scale compared with at first scale.

y, = 0.01 sin(12077) + 0.003 sin(24077) + 0.02 cos(400m7). (34)

Fig. 9 shows the relation between the SNR and GCV at the different scales. In Fig. 9(a), the corrupted signal
is denoised at the first scale. The SNR increases with the decrease of the GCV. The SNR is improved by up to
about 9 dB. The range of GCV is between 6 x 10~* and 4 x 10~*. Fig. 9(b) shows the results at second scale of
the multi-decomposition. The SNR increases from 9.7 to 14.7 dB. The GCV value decreases from 1.6 x 1072 to
0.8 x 107>. The SNR value increases with the decrease of the GCV value. Fig. 9(c) shows the similar results at
third scale as that at first and second scale. The SNR is up to 19.5dB.

6.2. Statistical feature extraction of localized impulse vibration signal

The wavelet transform can be used to represent efficiently the localized features of the signals. It is an ideal
tool for the extraction of features, especially if the vibration is induced by the fluid, which creates vibration
that is characteristic of the impulse signal. The impulse component in the vibration signals is an important
feature to diagnose the mechanical condition. As shown in Fig. 10, the original signal is decomposed into the
scaling coefficients ¢q[n] and wavelet coefficients d;[n]. The multi-decomposition based on the lifting scheme
splits the scaling coefficients into two parts using the same scheme, producing ¢,[n] and d[r] in the next step.
Hence, the wavelet decomposition of the signal at scale j has the structure [¢;[n], d;[n], . .., d;[n]]. The terminal
nodes of wavelet decomposition tree are shown in Fig. 10. In this work, the number of the decomposition level
was selected to be 3. As shown in Fig. 9, it was enough and effective for GCV to denoise the experimental
vibration signal and improve the SNR within the three-level decompositions. The other key point was to
extract feature values from the wavelet coefficients in the decomposition of the impulse vibration signal, which
was more effective in the three-level decompositions.

Fig. 11 shows the typical wavelet multi-decomposition of the experimental vibration signal. Fig. 11(a) shows
the original signal. Fig. 11(b) shows the scaling coefficient at first scale (c¢q[n]). Fig. 11(c) shows the wavelet
coefficient d[n] that is characteristic of the impulse signal. The impulse signal is produced by the pumping
mechanism when the piston rotates from the return line to supply line, which results in the overshoot of the
piston pressure. Figs. 11(d) and (e) show the scaling coefficients c¢;[n] and wavelet coefficients d5[n] at second
scale.

The scaling coefficients in the multi-decomposition of the vibration signal are the important information in
the impulse vibration signals. In order to diagnose the different conditions, the wavelet scaling coefficients at
first scale are used to extract the features.

The vibration signal is characteristic of impulse vibration, which is generated by the fluids. The
intermittency index is an effective feature to display the impulse energy in the vibration signal in the fluid
power system [25]. The intermittency index is used to the wavelet scaling coefficients at first scale. The
intermittency at each scale can be viewed directly using the intermittency index defined as

(Tm n)z 2 2 :2“7/” 2 11
" < 2 , <Tm n> - =1 T, ”/2 o om=123. (35)
T > i m n= >

m,n
m

Here T, , are the wavelet coefficients at scale index m. <T,2M> is the second-order statistical moment of the
I m

wavelet coefficients at scale index m. For example, a constant value of /,,,, = 1 for all m and n means that there
is no flow intermittency. A value of 10 at a specific set of indices m and n means that there is 10 times more
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Fig. 8. Original signal, corrupted signal and denoised signal by different scale decomposition with GCV: (a) original signal, (b) corrupted
signal with SNR of 1dB, (c) clean signal by first scale, (d) clean signal by second scale and (e) clean signal by third scale.

energy contained within the coefficients at that location than for the temporal mean at that scale at that
location in the signal. Fig. 12 shows the intermittency indices at the first wavelet scale for the vibration signals
under the five conditions. There are different amplitudes and number in the intermittency indices.
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Fig. 9. The relation between SNR and GCV at the different scale: (a) first scale, (b) second scale and (c) third scale.
Fig. 13 shows the statistical probability distribution (SPD) of the mean of the highest intermittency indices

at the first wavelet scale. The results show the different probability distribution under five different conditions.
Fig. 13(a) shows the mean of SPD was about 28 and the range of SPD was between —4 and 60 under BLC
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Fig. 11. The multi-decomposition based on the lifting scheme of the experimental vibration signal.

condition. Fig. 13(b) shows the mean of SPD was about 14 and the range of SPD was between 0 and 28, which
was different from the results under BLC condition. In Fig. 13(c), the mean of SPD was 41.5 and the range of
SPD was between 3 and 80 under FLC condition, which was more than that under BLC and BSC conditions.
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Fig. 13. The statistical probability distribution of the mean of the highest intermittency indices: (a) BLC, (b) BSC, (c) FLC, (d) FSC

and (e) NC.

In Fig. 13(d), the mean of SPD was about 40 under FSC condition. The range of SPD was between —8 and 88
under FSC condition, which was larger than that under FLC condition. Fig. 13(e) shows SPD under NC
condition. The mean of SPD was about 45 and the range of SPD was between —10 and 100. The mean and
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range were larger than the other four conditions. The mean of the highest intermittency indices at the first
wavelet scale can be used as feature values to diagnose the different conditions of the water hydraulic motor.

Fig. 14 shows the statistical probability distribution of the variances of the highest intermittency indices at
the first wavelet scale under the five piston conditions. Fig. 14(a) shows the mean of the variance SPD was
0.25 x 10% and the range was between —0.5 x 10* and 1 x 10* under FLC condition. Fig. 14(b) shows the mean
of the SPD was 0.1 x 10* and the range was between —0.2 x 10* and 0.4 x 10*, which were different from that
under FLC condition. In Figs. 14(c) and (d), the means under BLC and BSC conditions were 0.425 x 10* and
0.45 x 10*. The range of SPD was between —0.4 x 10* and 1.25 x 10* under BLC condition. The range of SPD
was between —0.4 x 10* and 1.3 x 10* under BSC condition. Fig. 14(e) shows that the mean was 0.5 x 10* and
the range of SPD was between —1 x 10* and 2 x 10*. Hence, the means and range of SPD under the five piston
conditions were different. The variances of the highest intermittency indices at the first wavelet scale can be
used as feature values to diagnose the different conditions of the water hydraulic motor.

The scaling coefficients in the multi-decomposition based on the lifting scheme involve the low frequency of
the vibration signals, which is the response of the mechanical structure condition. Fig. 15 shows the statistical
probability distribution of the second-order statistical moment of the scaling coefficients at first, second and
third scale. Fig. 15(a) shows SPD of the second-order statistical moment of the scaling coefficients at first,
second and third scale under BLC condition. The means of SPD at the first, second and third scale were
0.55x 107*, 0.925x 107* and 3 x 107*. The ranges of the SPD were between 0.5 x 10~ and 0.6 x 1074,
0.5x 107%and 1.8 x 107*, 1 x 10~*and 5 x 10~*. Fig. 15(b) shows SPD of the second-order statistical moment
of the scaling coefficients at first, second and third scale under BSC condition. The mean of SPD at the first,
second and third scale were 0.45x 107, 1 x 107 and 2.2 x 10~*. The ranges of the SPD were between
0.4x107*and 0.5x 107%,0.5 x 10"*and 1.5 x 107*,0.2 x 10™* and 4.2 x 10~*, which were different from that
under BLC condition. Fig. 15(c) shows SPD of the second-order statistical moment of the scaling coefficients
at first, second and third scale under FLC condition. The mean of SPD at the first, second and third scale were
0.2x107%, 0.5 x 10~* and 1.25 x 10~*, which were less than that under BLC and BSC conditions. The range
of the SPD were between 0.1 x 10™* and 0.3 x 107, 0.3 x 10™* and 0.7 x 107, 0.7 x 107* and 1.8 x 1074,
which were less than that under BLC and BSC conditions. Fig. 15(d) shows SPD of the second-order statistical
moment of the scaling coefficients at first, second and third scale under FSC condition. The mean of SPD at
the first, second and third scale were 0.25 x 107%, 0.55 x 10™* and 1.3 x 10™*, which were less than that under
BLC and BSC conditions and different from that under FLC condition. The range of the SPD was between
0.1 x107*and 0.4 x 107*,0.3 x 107* and 0.8 x 107*, 0.6 x 10™* and 2 x 10~*, which were different from that
under BLC, BSC and FLC conditions. Fig. 15(¢) shows SPD of the second-order statistical moment of the
scaling coefficients at first, second and third scale under NC condition. The mean of SPD at the first, second
and third scale were 0.25 x 10*4, 0.5x 107* and 0.95 x 10*4, which were different from the other four
conditions. The range of the SPD was between 0.2 x 107* and 0.3 x 107%, 0.4 x 107* and 0.6 x 107, 0.7 x
107* and 1.2 x 107*, which were different from the other four conditions. The range and mean of the
statistical probability distribution of the scaling coefficients were totally different under different piston
conditions.

6.3. Hypothesis testing for SPD to classify the five piston conditions

In order to classify the five piston conditions, the hypothesis testing was applied to compare the SPDs of the
values under five piston conditions as shown in Figs. 13—15. Statistical hypothesis testing is the fundamental
method used at the data analysis of a comparative experiment. The Kolmogorov—Smirnov (KS)-type test is
the commonly used goodness-of-fit tests [26]. The KS test is based on the following test statistic:

K = sup |[F*(x) — S(x)|, (36)

where F*(x) is the hypothesized cumulative distribution function. S(x) is the empirical distribution function
based on the sample data. KS statistic is the maximum difference between these functions.

Here the KS test was used to compare the SPD in Figs. 13—15 and shows the differences between the SPDs
among the five piston conditions. The null hypothesis for this test is that the two SPDs have the same
continuous distribution, that is Hy: F*(x) = S(x) for all the x from —oo to co. The alternative hypothesis is
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Fig. 14. Statistical probability distribution of the variance of the highest intermittency indices: (a) BLC, (b) BSC, (¢) FLC, (d) FSC
and (e) NC.

that the two SPDs have different continuous distributions, that is H;: F*(x)#S(x). The hypothesis that the two
SPDs have the same distribution was rejected if the result H is 1. The hypothesis that the two SPDs have the
same distribution cannot be rejected if the result H is 0. The p-value represents the statistical significance of the
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comparison and confidence level, which is at 5% level. If the p-value is less than 5%, the result H is 1 and H is
rejected. The two distributions have the difference. The low p-value rejects the hypothesis Hy. The K-value
shows how much difference is between the two SPDs under the piston conditions.

Table 1 shows the results of KS test among the mean SPDs of the highest intermittency indices under the
five piston conditions, which is shown in Fig. 13. The values H, p and K among the different piston conditions
are shown in Table 1. All the H-values equal to 1 between the BLC and other four piston conditions. The
value p is very small and the confidence level is very low. The SPDs of the highest intermittency indices were
different under very low confidence level. The H-values between the BSC and the other three conditions were
1. The value p was small and less than 5%. The SPD under BSC condition can be different from the other
three conditions. The KS test results among FLC, FSC and NC were unsatisfactory. The values H between
FLC and FSC, and NC and FSC were 0 and the values p were more than 5%.

Table 2 indicates the results of KS test among the variance SPDs of the highest intermittency indices, which
is shown in Fig. 14. The H-values between the variance SPD of the highest intermittency indices under BLC
condition with the other four conditions were 1. The BLC condition was different from other four conditions.
The H-values between the BSC and other three conditions were 1. The p-values were small and less than 5%.
The SPD under BSC condition can be different from the other three conditions. The results about values of H,
p and K among FLC, FSC and NC were not good.

Tables 3-5 show the results of the KS test among the SPD of the second-order statistical moment of the
scaling coefficients at first, second and third scale, which were shown in Fig. 15.

In Table 3, all the H-values among the five piston conditions were 1 and the p-values were less than 5%
except that between FLC and FSC. The values p between FLC and FSC were 0.2408 and the significance level
was 24.08%, which can be used to classify the difference in the SPDs between FLC and FSC condition. The
SPD of the second-order statistical moment of the scaling coefficients at first scale can be used to classify the
different piston conditions.

Table 4 shows the results of the KS test among the SPD of the second-order statistical moment of the
scaling coefficients at second scale. The H-values among the five piston conditions were 1 and the p-values

Table 1
Results of KS test among the mean SPDs of the highest intermittency indices

BLC BSC FLC FSC NC

BLC

H 1 1 1 1

P 2.1318e—14 1.0227e—005 4.2318—-004 1.2335-006

K 0.78 0.48 0.4 0.52
BSC

H 1 1 1 1

P 2.1318e—14 7.2932e—-20 3.2843e—18 4.9988e—19

0.78 0.92 0.88 0.9

FLC

H 1 1 0 0

p 1.0227e—005 7.2932e—-20 0.5077 0.0951

K 0.48 0.92 0.16 0.24
FSC

H 1 1 0 0

p 4.2318—-004 3.2843e—18 0.5077 0.3584

K 0.4 0.88 0.16 0.18
NC

H 1 1 0 0

p 1.2335—-006 4.9988e—19 0.0951 0.3584

K 0.52 0.9 0.24 0.18
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Table 2
Results of KS test among the variance SPDs of the highest intermittency indices
BLC BSC FLC FSC NC
BLC
H 1 1 1 1
p 7.8398¢—10 7.1595¢—5 4.2318—004 2.7638¢—5
K 0.64 0.44 0.4 0.46
BSC
H 1 1 1 1
p 7.8398e—10 3.2843e—18 1.2488e—16 4.9988¢—19
K 0.64 0.88 0.84 0.9
FLC
H 1 1 0 0
p 7.1595¢—5 3.2843e—18 0.6779 0.8409
K 0.44 0.88 0.14 0.12
FSC
H 1 1 0 0
P 4.2318—004 1.2488e—16 0.6779 0.8409
K 0.4 0.84 0.14 0.12
NC
H 1 1 0 0
p 2.7638e—5 4.9988¢—19 0.8409 0.8409
K 0.46 0.9 0.12 0.12
Table 3
Results of the KS test among the SPDs of the second-order statistical moment of the scaling coefficients at first scale
BLC BSC FLC FSC NC
BLC
H 1 1 1 1
p 1.2561e—7 2.1647e—23 2.1647¢—23 6.1544e—23
K 0.56 1 1 1
BSC
H 1 1 1 1
p 1.2561e—7 1.2488¢e—16 5.3094e—13 6.1544e—23
K 0.56 0.84 0.74 1
FLC
H 1 1 0 1
p 2.1647e—23 1.2488e—16 0.2408 1.003e—12
K 1 0.84 0.2 0.7392
FSC
H 1 1 0 1
p 2.1647e—23 5.3094e—13 0.2408 1.8631e—11
K 1 0.74 0.2 0.7
NC
H 1 1 0 0
p 6.1544e—23 6.1544e—23 1.003e—12 1.8631e—11
K 1 1 0.7392 0.7
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Table 4
Results of the KS test among the SPDs of the second-order statistical moment of the scaling coefficients at second scale
BLC BSC FLC FSC NC
BLC
H 1 1 1 1
p 3.7618e—8 2.1647¢—23 2.1647e—23 6.1544e—23
K 0.58 1 1 1
BSC
H 1 1 1 1
p 3.7618e—8 2.1647¢—23 1.3674e—21 6.1544e—23
K 0.58 1 0.96 1
FLC
H 1 1 0 1
p 2.1647e—23 2.1647¢—23 0.0951 1.0198¢—4
K 1 1 0.24 0.4367
FSC
H 1 1 0 1
p 2.1647e—23 1.3674e—21 0.0951 1.7897e—6
K 1 0.96 0.24 0.5183
NC
H 1 1 1 1
p 6.1544e—23 6.1544e—23 1.0198¢—4 1.7897e—6
K 1 1 0.4367 0.5183
Table 5
Results of the KS test among the SPDs of the second-order statistical moment of the scaling coefficients at third scale
BLC BSC FLC FSC NC
BLC
H 1 1 1 1
p 7.2932e—20 2.1647¢—23 2.1647e—23 2.1647e—23
K 0.92 1 1 1
BSC
H 1 1 1 1
p 7.2932e—20 2.1647e—23 1.3674e—21 6.1544e—23
K 0.92 1 0.96 1
FLC
H 1 1 0 0
p 2.1647e—23 2.1647e—23 0.056 0.1119
K 1 1 0.26 0.2358
FSC
H 1 1 0 1
p 2.1647e—23 1.3674e—21 0.056 0.0024
K 1 0.96 0.26 0.36
NC
H 1 1 0 1
p 2.1647¢—23 6.1544e—23 0.1119 0.0024
K 1 1 0.2358 0.36
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were very small except that between FLC and FSC. The significance level was 24.08%. The SPDs among the
five piston conditions were different.

Table 5 shows the same results as that in Tables 3 and 4. All the values H among the five piston conditions
were 1 and the values p were very small except that between FLC and FSC. The p-values between FLC and
FSC, NC were 0.056 and 0.1119 and the significances were 5.6% and 11.19%, respectively, which can be used
to classify the two SPDs between FLC and FSC, NC conditions.

Hence, the SPDs in Figs. 13—15 were statistically different under the piston conditions. They can be used as
effective features to classify the piston conditions.

7. Conclusion

In this work, the second-generation wavelet is proposed here as a novel method for the feature extraction
from the vibration signals of the water hydraulic motor. The second-generation wavelet consists of a lifting
scheme. The algorithm and method of multi-decomposition based on the lifting scheme is developed. The
denoise method for the vibration signals is presented on the lifting scheme and the GCV. The relation between
SNR and GCV is investigated. The corrupted simulated signal is used to test the proposed denoise algorithm.
The multi-decomposition of the vibration signal show the impulse vibration signal clearly. The SPDs of the
mean, variance and the second-order statistical moment of the scaling coefficients at first, second and third
scale were different and can be used to classify the different piston conditions.
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